Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 833
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542193

RESUMO

Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme ß-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.


Assuntos
Transtorno Depressivo Maior , Glucosiltransferases , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Depressão , Transtorno Depressivo Maior/genética , Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Mutação , Doença de Parkinson/metabolismo , Regulação para Cima
2.
Mol Neurodegener ; 19(1): 22, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454456

RESUMO

BACKGROUND: Mutations in the ß-glucocerebrosidase (GBA1) gene do cause the lysosomal storage Gaucher disease (GD) and are among the most frequent genetic risk factors for Parkinson's disease (PD). So far, studies on both neuronopathic GD and PD primarily focused on neuronal manifestations, besides the evaluation of microglial and astrocyte implication. White matter alterations were described in the central nervous system of paediatric type 1 GD patients and were suggested to sustain or even play a role in the PD process, although the contribution of oligodendrocytes has been so far scarcely investigated. METHODS: We exploited a system to study the induction of central myelination in vitro, consisting of Oli-neu cells treated with dibutyryl-cAMP, in order to evaluate the expression levels and function of ß-glucocerebrosidase during oligodendrocyte differentiation. Conduritol-B-epoxide, a ß-glucocerebrosidase irreversible inhibitor was used to dissect the impact of ß-glucocerebrosidase inactivation in the process of myelination, lysosomal degradation and α-synuclein accumulation in vitro. Moreover, to study the role of ß-glucocerebrosidase in the white matter in vivo, we developed a novel mouse transgenic line in which ß-glucocerebrosidase function is abolished in myelinating glia, by crossing the Cnp1-cre mouse line with a line bearing loxP sequences flanking Gba1 exons 9-11, encoding for ß-glucocerebrosidase catalytic domain. Immunofluorescence, western blot and lipidomic analyses were performed in brain samples from wild-type and knockout animals in order to assess the impact of genetic inactivation of ß-glucocerebrosidase on myelination and on the onset of early neurodegenerative hallmarks, together with differentiation analysis in primary oligodendrocyte cultures. RESULTS: Here we show that ß-glucocerebrosidase inactivation in oligodendrocytes induces lysosomal dysfunction and inhibits myelination in vitro. Moreover, oligodendrocyte-specific ß-glucocerebrosidase loss-of-function was sufficient to induce in vivo demyelination and early neurodegenerative hallmarks, including axonal degeneration, α-synuclein accumulation and astrogliosis, together with brain lipid dyshomeostasis and functional impairment. CONCLUSIONS: Our study sheds light on the contribution of oligodendrocytes in GBA1-related diseases and supports the need for better characterizing oligodendrocytes as actors playing a role in neurodegenerative diseases, also pointing at them as potential novel targets to set a brake to disease progression.


Assuntos
Doença de Gaucher , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lipídeos , Mutação , Doença de Parkinson/metabolismo
3.
FEBS Lett ; 598(4): 477-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302739

RESUMO

Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.


Assuntos
Doenças Mitocondriais , Doença de Niemann-Pick Tipo C , Fosfoproteínas , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Receptores de GABA/metabolismo
4.
ChemMedChem ; 19(7): e202300548, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381042

RESUMO

Several novel chemical series were identified that modulate glucocerebrosidase (GCase). Compounds from these series are active on glucosylceramide, unlike other known GCase modulators. We obtained GCase crystal structures with two compounds that have distinct chemotypes. Positive allosteric modulators bind to a site on GCase and induce conformational changes, but also induce an equilibrium state between monomer and dimer.


Assuntos
Doença de Gaucher , Glucosilceramidase , Humanos , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Glucosilceramidas , Hidrólise , Doença de Gaucher/tratamento farmacológico
5.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339105

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations in GBA1, characterized by glucocerebrosidase dysfunction and glucocerebroside and glucosylsphingosine accumulation. Since phenotypes of murine models of GD often differ from those in patients, the careful characterization of Gba1 mutant mice is necessary to establish their ability to model GD. We performed side-by-side comparative biochemical and pathologic analyses of four murine Gba1 models with genotypes L444P/L444P (p.L483P/p.L483P), L444P/null, D409H/D409H (p.D448H/p.D448H) and D409H/null, along with matched wildtype mice, all with the same genetic background and cage conditions. All mutant mice exhibited significantly lower glucocerebrosidase activity (p < 0.0001) and higher glucosylsphingosine levels than wildtype, with the lowest glucocerebrosidase and the highest glucosylsphingosine levels in mice carrying a null allele. Although glucocerebrosidase activity in L444P and D409H mice was similar, D409H mice showed more lipid accumulation. No Gaucher or storage-like cells were detected in any of the Gba1 mutant mice. Quantification of neuroinflammation, dopaminergic neuronal loss, alpha-synuclein levels and motor behavior revealed no significant findings, even in aged animals. Thus, while the models may have utility for testing the effect of different therapies on enzymatic activity, they did not recapitulate the pathological phenotype of patients with GD, and better models are needed.


Assuntos
Doença de Gaucher , Psicosina/análogos & derivados , Camundongos , Humanos , Animais , Idoso , Doença de Gaucher/genética , Doença de Gaucher/patologia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Mutação
6.
Nat Commun ; 15(1): 1434, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365772

RESUMO

Comorbid proteinopathies are observed in many neurodegenerative disorders including Alzheimer's disease (AD), increase with age, and influence clinical outcomes, yet the mechanisms remain ill-defined. Here, we show that reduction of progranulin (PGRN), a lysosomal protein associated with TDP-43 proteinopathy, also increases tau inclusions, causes concomitant accumulation of α-synuclein and worsens mortality and disinhibited behaviors in tauopathy mice. The increased inclusions paradoxically protect against spatial memory deficit and hippocampal neurodegeneration. PGRN reduction in male tauopathy attenuates activity of ß-glucocerebrosidase (GCase), a protein previously associated with synucleinopathy, while increasing glucosylceramide (GlcCer)-positive tau inclusions. In neuronal culture, GCase inhibition enhances tau aggregation induced by AD-tau. Furthermore, purified GlcCer directly promotes tau aggregation in vitro. Neurofibrillary tangles in human tauopathies are also GlcCer-immunoreactive. Thus, in addition to TDP-43, PGRN regulates tau- and synucleinopathies via GCase and GlcCer. A lysosomal PGRN-GCase pathway may be a common therapeutic target for age-related comorbid proteinopathies.


Assuntos
Doença de Alzheimer , Deficiências na Proteostase , Tauopatias , Masculino , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Progranulinas , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo
7.
J Integr Neurosci ; 23(1): 16, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287861

RESUMO

BACKGROUND: Mutations in the glucocerebrosidase (GBA1) and leucine-rich repeat kinase 2 (LRRK2) genes, encoding lysosomal enzyme glucocerebrosidase (GCase) and leucine-rich repeat kinase 2 (LRRK2), respectively, are the most common related to Parkinson's disease (PD). Recent data suggest a possible functional interaction between GCase and LRRK2 and their involvement in sphingolipid metabolism. The aim of the present study was to describe the clinical course and evaluate the lysosomal enzyme activities and sphingolipid concentrations in blood of patients with PD associated with dual mutations p.N370S GBA1 and p.G2019S LRRK2 (p.N370S/GBA-p.G2019S/LRRK2-PD) as well as in blood of asymptomatic mutation carriers (p.N370S/GBA1-p.G2019S/LRRK2-carrier). METHODS: One patient with p.N370S/GBA1-p.G2019S/LRRK2-PD and one p.N370S/GBA1-p.G2019S/LRRK2-carrier were enrolled. GBA1-associated PD (GBA1-PD), LRRK2-associated PD (LRRK2-PD), sporadic PD (sPD) patients were described earlier by our research group. A neuropsychiatric examination of the p.N370S/GBA1-p.G2019S/LRRK2-PD patient was carried out using scales (Montreal Cognitive Assessment scale (MoCA), Mini-mental State Examination scale (MMSE), Frontal Assessment Batter scale (FAB), Hospital Anxiety, and Depression Scale (HADS), etc). Lysosomal enzyme activity (GCase, alpha-galactosidase [GLA], acid sphingomyelinase [ASMase], galactosylcerebrosidase [GALC]) and sphingolipid concentrations (hexasylsphingosine [HexSph], lysoglobotriaosylsphingosine [LysoGb3], lysosphingomyelin [LysoSM]) were assessed with high-performance liquid chromatography-tandem mass spectrometry in blood. The following comparison with the previously described groups of GBA1-PD and sPD patients were conducted. RESULTS: Clinical features of p.N370S/GBA1-p.G2019S/LRRK2-PD included an early age of onset of the disease (46 years) and mild cognitive and affective disorders (MMSE = 29, MoCA = 23), despite a long (24 years) course of the disease. Interestingly, no differences were found in hydrolase activity and lysosphingolipid concentrations between the p.N370S/GBA1-p.G2019S/LRRK2-PD patient and GBA1-PD patients. However, GCase activity was lower in these groups than in LRRK2-PD, sPD, and controls. Additionally, the p.N370S/GBA1-p.G2019S/LRRK2-PD patient was characterized by a pronounced decreased in ASMase activity and increased LysoSM concentration compared to the p.N370S/GBA1-p.G2019S/LRRK2-carrier (p = 0.023, p = 0.027, respectively). CONCLUSIONS: Based on one patient, our results indicate a protective effect of the p.G2019S mutation in the LRRK2 gene on clinical course of p.N370S/GBA1-PD. The identified pronounced alteration of ASMase activity and LysoSM concentration in p.N370S/GBA1-p.G2019S/LRRK2-PD provide the basis for the further research.


Assuntos
Glucosilceramidase , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Progressão da Doença , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Hidrolases/genética , Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Doença de Parkinson/genética , Esfingolipídeos
8.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947642

RESUMO

Tightly regulated and highly adaptive lipid metabolic and transport pathways are critical to maintaining brain cellular lipid homeostasis and responding to lipid and inflammatory stress to preserve brain function and health. Deficits in the lipid handling genes APOE and GBA1 are the most significant genetic risk factors for Lewy body dementia and related dementia syndromes. Parkinson's disease patients who carry both APOE4 and GBA1 variants have accelerated cognitive decline compared to single variant carriers. To investigate functional interactions between brain ApoE and GBA1, in vivo GBA1 inhibition was tested in WT versus ApoE-deficient mice. The experiments demonstrated glycolipid stress caused by GBA1 inhibition in WT mice induced ApoE expression in several brain regions associated with movement and dementia disorders. The absence of ApoE in ApoE-KO mice amplified complement C1q elevations, reactive microgliosis and astrocytosis after glycolipid stress. Mechanistically, GBA1 inhibition triggered increases in cell surface and intracellular lipid transporters ABCA1 and NPC1, respectively. Interestingly, the absence of NPC1 in mice also triggered elevations of brain ApoE levels. These new data show that brain ApoE, GBA1 and NPC1 functions are interconnected in vivo, and that the removal or reduction of ApoE would likely be detrimental to brain function. These results provide important insights into brain ApoE adaptive responses to increased lipid loads.


Assuntos
Encéfalo , Glucosilceramidase , Humanos , Camundongos , Animais , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Encéfalo/metabolismo , Lisossomos/metabolismo , Apolipoproteínas E , Glicolipídeos/metabolismo
9.
Stem Cell Res ; 73: 103229, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890332

RESUMO

Gaucher disease (GD) is a common lysosomal storage disease resulting from mutations in the glucocerebrosidase (GBA1) gene. This genetic disorder manifests with symptoms affecting multiple organs, yet the underlying mechanisms leading to pathology remain elusive. In this study, we successfully generated the MUi030-A human induced pluripotent stem cell (hiPSC) line using a non-integration method from a male type-3 GD patient with a homozygous c.1448T>C (L444P) mutation. These hiPSCs displayed a normal karyotype and pluripotency markers and the remarkable ability to differentiate into cells representing all three germ layers. This resourceful model holds significant promise for illuminating GD's underlying pathogenesis.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Células Cultivadas
10.
eNeuro ; 10(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816595

RESUMO

Lysosomes are acidic organelles that traffic throughout neurons delivering catabolic enzymes to distal regions of the cell and maintaining degradative demands. Loss of function mutations in the gene GBA encoding the lysosomal enzyme glucocerebrosidase (GCase) cause the lysosomal storage disorder Gaucher's disease (GD) and are the most common genetic risk factor for synucleinopathies like Parkinson's disease (PD) and dementia with Lewy bodies (DLB). GCase degrades the membrane lipid glucosylceramide (GlcCer) and mutations in GBA, or inhibiting its activity, results in the accumulation of GlcCer and disturbs the composition of the lysosomal membrane. The lysosomal membrane serves as the platform to which intracellular trafficking complexes are recruited and activated. Here, we investigated whether lysosomal trafficking in axons was altered by inhibition of GCase with the pharmacological agent Conduritol B Epoxide (CBE). Using live cell imaging in human male induced pluripotent human stem cell (iPSC)-derived forebrain neurons, we demonstrated that lysosomal transport was similar in both control and CBE-treated neurons. Furthermore, we tested whether lysosomal rupture, a process implicated in various neurodegenerative disorders, was affected by inhibition of GCase. Using L-leucyl-L-leucine methyl ester (LLoME) to induce lysosomal membrane damage and immunocytochemical staining for markers of lysosomal rupture, we found no difference in susceptibility to rupture between control and CBE-treated neurons. These results suggest the loss of GCase activity does not contribute to neurodegenerative disease by disrupting either lysosomal transport or rupture.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Masculino , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doenças Neurodegenerativas/metabolismo , Transporte Axonal , Neurônios/metabolismo , Prosencéfalo/metabolismo , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo
11.
Angew Chem Int Ed Engl ; 62(40): e202309306, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37582679

RESUMO

Fluorogenic substrates are emerging tools that enable studying enzymatic processes within their native cellular environments. However, fluorogenic substrates that function within live cells are generally incompatible with cellular fixation, preventing their tandem application with fundamental cell biology methods such as immunocytochemistry. Here we report a simple approach to enable the chemical fixation of a dark-to-light substrate, LysoFix-GBA, which enables quantification of glucocerebrosidase (GCase) activity in both live and fixed cells. LysoFix-GBA enables measuring responses to both chemical and genetic perturbations to lysosomal GCase activity. Further, LysoFix-GBA permits simple multiplexed co-localization studies of GCase activity with subcellular protein markers. This tool will aid studying the role of GCase activity in Parkinson's Disease, creating new therapeutic approaches targeting the GCase pathway. This approach also lays the foundation for an approach to create fixable substrates for other lysosomal enzymes.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Lisossomos/metabolismo , Mutação
12.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569538

RESUMO

Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-ß-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/patologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Substância Negra/metabolismo
13.
Traffic ; 24(10): 489-503, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491971

RESUMO

Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low ß-glucocerebrosidase (ß-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant ß-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based ß-GC activity assay followed by reporter trafficking assay utilizing ß-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the ß-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their ß-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Células HeLa , Lisossomos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
14.
Gene ; 882: 147639, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473971

RESUMO

Last data demonstrated that exonic variants of LRRK2 (p.G2019S, p.M1646T) may affect the catalytic activity of lysosomal enzyme glucocerebrosidase (GCase) probably through the phosphorylation of Rab10 protein. We aimed to evaluate an association of LRRK2 exonic variants previously associated with alteration of phosphorylation levels for Rab10Thr73 with PD risk in Russian population and analyze an impact of p.G2019S mutation and selected LRRK2 variants on lysosomal hydrolase activities. LRRK2 variants were determined by full sequencing of LRRK2 in 508 PD patients and 470 controls from Russian population. Activity of lysosomal enzymes (glucocerebrosidase (GCase), alpha-galactosidase A (GLA), acid sphingomyelinase (ASMase) and concentrations of their corresponded substrates (hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), lysosphingomyelin (LysoSM), respectively) were estimated in 211 PD patients and 179 controls by liquid chromatography with tandem mass spectrometry (LC-MS-MS) in dry blood spots. p.M1646T and p.N2081D were associated with PD (OR = 2.33, CI 95%: 1.1215 to 4.8253, p = 0.023; OR = 1.89, 95%CI: 1.0727 to 3.3313, p = 0.028, respectively) in Russian population. An increased LysoGb3 concentration was found in p.G2019S and p.N2081D LRRK2 carriers among PD patients compared to both PD patients and controls (p.G2019S: p = 0.00086, p = 0.0004, respectively; p.N2081D: p = 0.012, p = 0.0076, respectively). A decreased ASMase activity in p.G2019S LRRK2 carriers among PD patients (p = 0.014) was demonstrated as well. Our study supported possible involvement of LRRK2 dysfunction in an alteration of sphingolipid metabolism in PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Esfingolipídeos , Lisossomos
15.
Chemistry ; 29(53): e202301210, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37313991

RESUMO

The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes ß-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best ß-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase ß-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.


Assuntos
Dendrímeros , Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Inibidores Enzimáticos/metabolismo
16.
J Infect Dis ; 228(6): 777-782, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37159513

RESUMO

Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the ß-glucocerebrosidase (GCase) GBA gene, which result in macrophage dysfunction. CRISPR (clustered regularly interspaced short palindromic repeats) editing of the homozygous L444P (1448T→C) GBA mutation in type 2 GD (GBA-/-) human-induced pluripotent stem cells (hiPSCs) yielded both heterozygous (GBA+/-) and homozygous (GBA+/+) isogenic lines. Macrophages derived from GBA-/-, GBA+/- and GBA+/+ hiPSCs showed that GBA mutation correction restores normal macrophage functions: GCase activity, motility, and phagocytosis. Furthermore, infection of GBA-/-, GBA+/- and GBA+/+ macrophages with the Mycobacterium tuberculosis H37Rv strain showed that impaired mobility and phagocytic activity were correlated with reduced levels of bacterial engulfment and replication suggesting that GD may be protective against tuberculosis.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Mycobacterium tuberculosis , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doença de Gaucher/genética , Mutação , Macrófagos/metabolismo
17.
Traffic ; 24(7): 254-269, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37198709

RESUMO

Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of ß-glucocerebrosidase (ß-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated ß-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the ß-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.


Assuntos
Proteínas Reguladoras de Apoptose , Doença de Gaucher , Glucosilceramidase , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Estresse do Retículo Endoplasmático , Doença de Gaucher/metabolismo , Doença de Gaucher/terapia , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Células HeLa , Lisossomos/metabolismo , Proteínas Reguladoras de Apoptose/genética
18.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240451

RESUMO

Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Simulação de Acoplamento Molecular , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Técnicas de Cultura de Células , Sítios de Ligação , Glicolipídeos , Mutação
19.
PLoS Genet ; 19(5): e1010760, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200393

RESUMO

Heterozygous variants in the glucocerebrosidase (GBA) gene are common and potent risk factors for Parkinson's disease (PD). GBA also causes the autosomal recessive lysosomal storage disorder (LSD), Gaucher disease, and emerging evidence from human genetics implicates many other LSD genes in PD susceptibility. We have systemically tested 86 conserved fly homologs of 37 human LSD genes for requirements in the aging adult Drosophila brain and for potential genetic interactions with neurodegeneration caused by α-synuclein (αSyn), which forms Lewy body pathology in PD. Our screen identifies 15 genetic enhancers of αSyn-induced progressive locomotor dysfunction, including knockdown of fly homologs of GBA and other LSD genes with independent support as PD susceptibility factors from human genetics (SCARB2, SMPD1, CTSD, GNPTAB, SLC17A5). For several genes, results from multiple alleles suggest dose-sensitivity and context-dependent pleiotropy in the presence or absence of αSyn. Homologs of two genes causing cholesterol storage disorders, Npc1a / NPC1 and Lip4 / LIPA, were independently confirmed as loss-of-function enhancers of αSyn-induced retinal degeneration. The enzymes encoded by several modifier genes are upregulated in αSyn transgenic flies, based on unbiased proteomics, revealing a possible, albeit ineffective, compensatory response. Overall, our results reinforce the important role of lysosomal genes in brain health and PD pathogenesis, and implicate several metabolic pathways, including cholesterol homeostasis, in αSyn-mediated neurotoxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Envelhecimento/metabolismo
20.
Nat Commun ; 14(1): 1930, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024507

RESUMO

Mutations in GBA1, the gene encoding the lysosomal enzyme ß-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals. In mitochondria, GCase promotes the maintenance of mitochondrial complex I (CI) integrity and function. Furthermore, GCase interacts with the mitochondrial quality control proteins HSP60 and LONP1. Disease-associated mutations impair CI stability and function and enhance the interaction with the mitochondrial quality control machinery. These findings reveal a mitochondrial role of GCase and suggest that defective CI activity and energy metabolism may drive the pathogenesis of GCase-linked neurodegeneration.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Proteômica , Doença de Parkinson/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Metabolismo Energético/genética , Mutação , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , Proteínas Mitocondriais/metabolismo , Proteases Dependentes de ATP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...